Explanation in Science

James A. Overton (james@overton.ca)

PSA, Chicago - November 7, 2014

Common Questions

- what is a scientific explanation?
- what is explained?
- what does the explaining?

Diverse Answers

- deductive-nomological (D-N) (Hempel and Oppenheim 1948; Hempel 1965)
- statistical relevance (Salmon 1971)
- unification (Friedman 1974; Kitcher 1989)
- pragmatic (van Fraassen 1980)
- causal-mechanical (Salmon 1984; Dowe 2000)
- intervention (Woodward 2003)
- mechanistic (Machamer, Darden, and Craver 2000; Bechtel and Abrahamsen 2005)
- asymptotic (Batterman 2002)
- model-based (Bokulich 2009)

Science Dataset

- ▶ 781 articles from one year of the journal Science
- large set of small case studies, randomly sampled
 - Sample A: 25 "explain" sentences
 - Sample B: 100 sentences
 - Sample C: 25 abstracts

I use Sample A to build my account and the others to test it

Previous Work

- "Explain" in scientific discourse, Synthese 190(8):1383–1405, 2013.
- explanation is a goal of scientific practise
- explanation is important for understanding scientific practise
- explanation is general, across sciences

- justifies, at least in part, the diversity of philosophical accounts
- is there a unity to scientific explanation?

Current Work

▶ a general philosophical account of scientific explanation

No clear theoretical predictions for a star with parameters similar to those for HIP 13044 exist, hence it is possible that some high-order oscillations can explain the 1.4- or 3.5-day signal.

Setiawan, J., R.J. Klement, T. Henning, H.W. Rix, B. Rochau, J. Rodmann, and T. Schulze-Hartung. 2010. A giant planet around a metal-poor star of extragalactic origin. *Science* 330(6011):1642.

High-order oscillations *of luminance* in the theoretical predictions for *the stellar dynamics* of stars with parameters similar to HIP 13044 CAN POSSIBLY EXPLAIN the length of the signals *in the luminance* of HIP 13044.

Case A10: Normal Form

can possibly explainThe high-orderthe lengthof oscillationsof the signalsof luminancein the luminancein the theoryof HIP 13044of stellar dynamicswhich is a starin models of starswith parameters similarwith parameters similarto HIP 13044.to HIP 13044

Case A10: Patterns

phrase	can possibly explain	
top	The high-order	the length
core	of oscillations	of the measurements
	of luminance	of the oscillations
	in the theory	of luminance
	of stellar dynamics	of HIP 13044
	in models	
base	of stars	which is a star
	with parameters similar	with parameters similar
	to HIP 13044	to HIP 13044.

Case A10: Base

	with parameters simi- lar to HIP 13044	with parameters simi- lar to HIP 13044.
base	of stars	which is a star
	in models	
	of stellar dynamics	of HIP 13044
	in the theory	of luminance
	of luminance	of the oscillations
core	of oscillations	of the measurements
top	The high-order	the length
phrase	can possib	oly explain

Case A10: Qualities

phrase	can possibly explain	
top	The high-order	the length
core	of oscillations	of the measurements
	of luminance	of the oscillations
	in the theory	of luminance
	of stellar dynamics	of HIP 13044
	in models	
base	of stars	which is a star
	with parameters similar	with parameters similar
	to HIP 13044	to HIP 13044.

Case A10: Core

phrase	can possibly explain	
top	The high-order	the length
core	of oscillations	of the measurements
	of luminance	of the oscillations
	in the theory	of luminance
	of stellar dynamics	of HIP 13044
	in models	
base	in models of stars	which is a star
base	of stars with parameters similar	which is a star with parameters similar

Physiological concentrations of ADP [adenosine diphosphate] inhibit kinase activity in the oscillator, and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock.

Rust, M.J., S.S. Golden, and E.K. O'Shea. 2011. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. *Science* 331(6014):220.

phrase	is sufficient to quantitatively explain	
top	The physiological concentration	the rate
core	of ADP	of entrainment
	in the mathematical model	
	of the activity	
	of kinase	
base	in circadian clocks	in circadian clocks
	of cyanobacteria	of cyanobacteria.

In summary, changes in water mass formation processes are not necessarily required to explain the high GNAIW [Glacial North Atlantic Intermediate Water] end-member $\delta^{13}{\rm C}$ values.

Olsen, A., and U. Ninnemann. 2010. Large δ^{13} C gradients in the preindustrial North Atlantic revealed. *Science* 330(6004):658.

phrase	are not necessarily required to explain	
top	Changes	the large size
core	in the processes	of measurements of $\delta^{13}C$
	of formation	in end-members
		of GNAIW
base	of water masses	which is a water mass.

Five Categories

- data
- entity
- kind
- model
- theory

Data

- a statement about an entity
- Types:
 - measurements
 - observations
 - images
- Examples:
 - ▶ the luminosity measurements of HIP 13044 (A10)
 - the measurements of rates of entrainment of circadian clocks (A4)
 - the measurements of end-member δ^{13} C values (A12)
 - the observations of the severity of the Fog phenotype in C. elegans (B58)

Entity

- a concrete particular thing or process
- Types:
 - stars
 - samples
 - specimens
- Examples:
 - star HIP 13044 (A10)
 - GNAIW's formation process (A12)
 - the Tagish Lake meteorite (A19)
 - the sample of carbon monoxide extracted from ice core D47 in (A15)

Kind

- an abstract universal class of entities
- Types:
 - natural kinds
 - species
 - universals
- Examples:
 - stars with parameters similar to HIP 13044 (A10)
 - circadian clocks (A4)
 - ► ADP (A4)
 - water masses (A12)
 - lithium (A1)
 - ► *E. coli* (A8)
 - ► Mn₄CaO₂ (B68)

Model

- an abstract description of the relationships that hold between kinds and their qualities
- Types:
 - sets of differential equations
 - mechanisms
 - flow charts
- Examples:
 - models of stellar dynamics (A10)
 - mathematical models of kinase activity in circadian clocks (A4)
 - Brownian random walks modelling foraging behaviour (B49)
 - reaction-diffusion equations modelling spatially periodic biological structures (B45)
 - ▶ a hierarchical model of stem cell crypts (A14)

Theory

- a principle, set of principles, or a formal system that is a building block for models.
- Types:
 - Iaws
 - empirical generalizations
 - mathematical formalisms
- Examples:
 - the theory of stellar dynamics (A10)
 - the theory of chromosomal supercoiling (B21)
 - universal hydrodynamics (B2)
 - the defensive function of sabre teeth (B54)
 - the mathematical theory of differential equations (B45)

Pairs of Categories

Figure 1: Pairs of categories

Sample A: Variety

Figure 2: Sample A heatmap

Relations Between Categories

Figure 3: Some relations between instances of categories

Structure of an Explanation: Basic

Figure 4: Basic structure of a scientific explanation.

Scientific Explanation

- 1. explanans:
 - a quality/property/characteristic
 - of a data/entity/kind/model/theory
 - at least as general as the explanandum
- 2. explanandum
 - a quality/property/characteristic
 - of a data/entity/kind/model/theory
 - at least as specific as the explanans
- 3. explain-relation:
 - expresses the counterfactual dependence of the explanandum quality on the explanans quality
 - answers: What if things had been different?
 - supported by a core relation:
 - connects explanans to explanandum
 - counterfactual supporting

Structure of an Explanation: Theory-Data

Figure 5: General structure of a theory-data explanation.

Evidence and Explanation

- in Samples B and C, order can be reversed
- explanation
 - general to specific
 - Iower-left triangle
- evidence
 - specific to general
 - upper-right triangle
- otherwise the same structure

Sample A: 25 "explain" sentences

Figure 6: Sample A heatmap

Sample B: 100 sentences

Figure 7: Sample B heatmap

Sample C: 25 abstracts

Figure 8: Sample C heatmap

Samples A, B, C

Figure 9: Samples A, B, C heatmap

Room for Other Accounts

- theory-data
 - deductive-nomological (D-N)
- theory/model
 - unification
 - asymptotic
- model/kind/entity
 - intervention
 - mechanistic
 - model-based
- entity/data
 - causal-mechanical
- no room
 - statistical relevance
 - pragmatic

Evidence for Other Accounts in the Science Dataset

- strong evidence
 - intervention
 - mechanistic
 - model-based
- very weak evidence
 - deductive-nomological
 - causal-mechanical (Salmon and Dowe)
- no evidence
 - statistical relevance
 - unification
 - asymptotic
- equivocal
 - pragmatic

Upshot

- one explain-relation, different core relations
- five categories for the explanans and explanandum
- pairs of categories determine core relation
- generalized counterfactual account
- many existing accounts fit the framework, but not everything goes

Appendix: Science Informatics

- data: measurements in databases, spreadsheets; images
- entity: subject IDs, barcodes, URIs
- kind: domain ontologies
- model: programs
- theory: software libraries