C.S. Peirce and the Philosophy of Medical Imaging

James A. Overton, Nick Nash, and Cesare Romagnoli

The University of Western Ontario

July 17, 2014 Charles S. Peirce Centennial Congress Lowell, MA

Introduction

Prostate Cancer

- a leading cause of cancer-related death in men
- technology and techniques advancing rapidly
- challenges of communication between physicians, radiologists, surgeons, technicians, and patients
- Peirce's philosophy illuminates the interpretation of images and the process of diagnosis

Status Quo: Naive Realism

- status quo is unreflective naive realism
 - prostate cancer is a single unchanging thing
 - images mirror reality
 - diagnosis is deduction from image to the thing itself
- ignores and obscures the work done to reconcile conflicting information and changing knowledge

A Pragmaticist Approach

- Peirce's philosophy is a fruitful alternative
 - prostate cancer understood in terms possible experiments and habits of mind
 - diagnosis involves deduction, induction, and abduction
 - medical imaging as a semiotic process
- practical tools for better communication
- feedback between theory and practise

Prostate Cancer

Past

- prostate first described 1536, first depicted 1538
- prostate cancer histology 1853
- first prostatectomy 1904
- hormone treatments won Nobel Prizes in 1966 and 1977
- modern therapies started mid-20th century
 - radium implants
 - brachytherapy
 - external beam therapy
 - chemotherapy

Present

- prostate-specific antigen (PSA) measurements
- ultrasound guided biopsy
- radiotherapy
- radical retropubic prostatectomy
- emphasis on sparing nerves and healthy tissue for better quality of life
- smaller tumours detected earlier
- treatment can be postponed in favour of surveillance

Future

- trend toward focal therapy
 - cryotherapy
 - high-frequency ultrasound
 - requires millimetre accuracy
- wider range of imaging options
- other treatments targeting only cancer cells

Continuing Change

"if one can define accurately all of the conceivable experimental phenomena which the affirmation or denial of a concept could imply, one will have therein a complete definition of the concept, and *there is absolutely nothing more in it*" ('What Pragmatism Is' 5.414)

prostate cancer has changed dramatically, and continues to change

Case Study: Multi-Modal Medical Imaging

Image-Guided Prostate Cancer Management

- CIHR Team for Image-Guided Prostate Cancer Management (IGPC)
 - a series of projects to advance prostate cancer treatment
 - funded by Canadian Institutes of Health Research
 - compares ultrasound, MRI, and pathology
 - wide range of techniques, including machine vision
- comparison is difficult
 - the prostate is not rigid
 - imaging, surgery, and pathology change its shape
 - changes in shape are difficult to reconcile across images

Magnetic Resonance Imaging (MRI)

- powerful magnet aligns the spins of hydrogen nuclei (protons)
- a radio pulse flips the spins
- protons "relax" to the previous alignment and emit radio signals
- signals are reconstructed into 2D or 3D images
- differences in relaxation distinguish tissues and structures
- different MRI "sequences" for different uses

T2 Weighted MRI

- primarily distinguishes fat from water
- peripheral zone tumours expected to be hypointense (i.e. darker)

Diffusion Weighted MRI

- measures diffusion of water in tissues
- tumours have higher cell density and are expected to be hyperintense (i.e. brighter)

Apparent Diffusion Coefficient (ADC) MRI

- composite of several diffusion measurements
- tumours expected to be hypointense (i.e. darker)

Contrast MRI

- inject a contrast agent, such as gadolinium, into an artery
- gadolinium-rich blood appears as hyperintense (i.e. brighter)
- images captured in intervals of several seconds over three minutes
- tumours expected to be hypervascular (i.e. more blood vessels)

Early Phase Contrast MRI

tumours should show "wash in" (i.e. become brighter) as they take up blood earlier than surrounding tissue

Late Phase Contrast MRI

tumours should show "wash out" (i.e. become darker) as they push out blood earlier than surrounding tissue

Annotated Whole Mount Pathology

- whole prostate is removed
- treated, stained, fixed in a block of wax, sliced into thin sections, photographed, analyzed
- cancerous cells are distinguished and annotated

Discussion: The Logic of Medical Imaging

- these figures are from an ideal case, where signs align
- status quo is to think of diagnosis as deduction from signs to disease
- but signs are usually incomplete or contradictory

Induction

- radiologists have years of training and experience
- from this they induce complex and subtle rules, building habits of mind
- novel cases require new habits

Abduction

radiologists have to ask "what if?" questions, e.g.:

- lesion is hypovascular in T2 but not seen in diffusion
- what if this is tumour that is not hypervascular?
- deduction: less wash-in and wash-out with contrast
- induction: use contrast imaging
- reason from a result and a case to a new or modified rule
- the tumour might be different from the ideal
- change habits of mind, require new experiments

Clinician and Community

- clinicians use deduction, induction, and abduction to make diagnoses
- the wider community develops better technologies and techniques
- IGPC as an example:
 - abduction: what if MRI can detect prostate cancer better than ultrasound?
 - deduction: MRI should detect more prostate cancer than ultrasound when both are compared to pathology
 - induction: multi-modal imaging experiments to test the deduction

Praxiography

- Annemarie Mol, The Body Multiple
- case study of atherosclerosis (i.e. hardening of the arteries) in the legs
- observed patients, doctors, nurses, technicians, etc.
- points out the diversity of "enactments" by which the disease is experienced
- distribution and coordination of enactments illuminates the work done to bring these experiences together

Semiosis

- medical images and reports are clearly systems of signs
 - diagrammatic reasoning
 - perception and perceptual judgement
 - biosemiotics?
- what can Peirce teach us about this aspect of medical imaging?
- topic of ongoing research ...

Tools for Clear Communication

Theory and Practise

virtuous cycle

- we apply our theoretical understanding to practical applications
- complexities of practical application drive our theoretical research
- good theory and tools support better abductions, better diagnoses
- practical applications:
 - biomedical ontologies
 - structured reporting

Biomedical Ontologies

Biomedical Ontologies: Terms

- "an ontology" as a carefully constructed system of terminology for a domain
 - Gene Ontology
 - Protein Ontology
 - Foundational Model of Anatomy
 - Common Anatomical Reference Ontology
 - Infectious Disease Ontology
 - Ontology for Biomedical Investigations
 - many more . . .
- terms have globally unique identifiers
 - example: FMA:9600 "prostate"
 - http://purl.obolibrary.org/obo/FMA_9600
- terms have textual and logical (formal, computable) definitions
- widely used in biomedical informatics

Biomedical Ontologies: Relations and Reasoning

- well-defined logical relations form a network
- examples: "is a" (subtype), "part of"
- computers can follow links to draw inferences

Structured Reporting

Unstructured Reporting: Status Quo

- radiologists use "narrative reports"
 - idiosyncratic terminology and organization
 - very hard to search and analyze
- pathologists tend to use long forms
- we have developed a prototype software tool for structured reporting in prostate cancer

Structured Reporting: Prototype

- diagram, form, and textual report
 - easy to translate into other languages
 - data is easy to search and analyze
- we strive to balance consistency with flexibility

Conclusions

Conclusions

Peirce's philosophy is a fruitful alternative to status quo

- deduction, induction, abduction
- individual and community reasoning
- ongoing work on semiosis and perception
- constructive feedback between
 - theory and practise
 - philosophy and medicine
- applications to
 - biomedical ontologies
 - structured reporting